Definable Morse Functions in a Real Closed Field
نویسنده
چکیده
Let X be a definably compact definable C manifold and 2 ≤ r < ∞. We prove that the set of definable Morse functions is open and dense in the set of definable C functions on X with respect to the definable C topology.
منابع مشابه
Zero-set Property of O-minimal Indefinitely Peano Differentiable Functions
Given an o-minimal expansion M of a real closed field R which is not polynomially bounded. Let P∞ denote the definable indefinitely Peano differentiable functions. If we further assume that M admits P∞ cell decomposition, each definable closed set A ⊂ Rn is the zero-set of a P∞ function f : Rn → R. This implies P∞ approximation of definable continuous functions and gluing of P∞ functions define...
متن کاملDefinable Smoothing of Lipschitz Continuous Functions
Let M be an o-minimal structure over the real closed field R. We prove the definable smoothing of definable Lipschitz continuous functions. In the case of Lipschitz functions of one variable we are even able to preserve the Lipschitz constant.
متن کاملElementary equivalence of lattices of open sets definable in o-minimal expansions of real closed fields
It is well-known that any two real closed fields R and S are elementarily equivalent. We can then consider some simple constructions of new structures out of real closed fields, and try to determine if these constructions, when applied to R and S, give elementarily equivalent structures. We can for instance consider def(R, R), the ring of definable functions from R to R, and we obtain without d...
متن کاملStrongly minimal expansions of (C,+) definable in o-minimal fields
We characterize those functions f : C → C definable in o-minimal expansions of the reals for which the structure (C,+, f) is strongly minimal: such functions must be complex constructible, possibly after conjugating by a real matrix. In particular we prove a special case of the Zilber Dichotomy: an algebraically closed field is definable in certain strongly minimal structures which are definabl...
متن کاملDefinably Simple Groups in O-minimal Structures
Let G = 〈G, ·〉 be a group definable in an o-minimal structure M. A subset H of G is G-definable if H is definable in the structure 〈G, ·〉 (while definable means definable in the structure M). Assume G has no Gdefinable proper subgroup of finite index. In this paper we prove that if G has no nontrivial abelian normal subgroup, then G is the direct product of G-definable subgroups H1, . . . ,Hk s...
متن کامل